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Digital image correlation has become an important and effective non-contact optical full-field strain mea-
surement technique. The strain field obtained directly by image correlation algorithm is full of noise. In
this letter, we explore a novel way of actively adding small amount of Gaussian random noise to original
displacement field, subsequently utilizing the well-known thin-plate spline smoothing (TPSS) technique
to smooth the noised displacement field, and finally differentiating smoothed displacement field to get
reliable strain field. The resultant method, named as active noise thin-plate spline smoothing (ANTPSS),
outperforms the conventional TPSS and spline least-squares approximation. Moreover, ANTPSS success-
fully smooths the displacement filed obtained from three-point bending experiment of foam block and
generates a reliable inhomogeneous strain field.
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Digital image correlation (DIC)[1−3] is an effective and
easy-to-use technique which measures the surface defor-
mation of samples and structures under consideration.
In DIC, the problem of computing accurate and reli-
able strain field from direct correlation solutions is still
being actively investigated. It is more practical to ap-
ply smoothing algorithms to displacement fields for per-
forming strain analysis[4]. Thin-plate spline smoothing
(TPSS) was one of the most effective methods which si-
multaneously consider the “closeness” of spline to ob-
served data and spline “smoothness” by adding the
smooth penalty to traditional spline lest-squares formu-
lation. In 1991, Sutton et al.[5] proposed the finite el-
ement formulation of TPSS. Recently, Pan et al.[6] pro-
posed pointwise least squares for strain field calculation.
The spline least-squares approximation can also be used
to smooth displacement field.

In this letter, we explore a novel way of actively adding
small amount of Gaussian white-noise to original dis-
placement field then smooth the noised field with TPSS
and form the new method active noise TPSS (ANTPSS).
Experiment on simulated tensile test and comparison be-
tween ANTPSS, TPSS and spline least-squares approxi-
mation show that the proposed ANTPSS gives more ac-
curate strain field.

DIC is a well-established non-contact full-field defor-
mation measurement technique. After the digital images
of the spackled surface before and after deformation are
recorded, the reference subset and deformed subset on
two images could be mathematically compared with zero-
mean normalized cross-correlation criteria (ZNCC)[7] as
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where f(x, y) and g(x′, y′) represent the gray value of the
reference and deformed subsets respectively, fm and gm

are the average gray values of points in reference and de-
formed subsets of (2M+ 1)×(2M+ 1) pixels, and ~p is the
deformation vector which describes the correspondance
between coordinate (x, y) and (x′, y′). The coordinates
(x, y) of all points in reference subset after deformation
could be expressed by first-order shape function. The
bi-cubic spline interpolation could be used for gray value
reconstruction.

To minimize the ZNCC criteria in Eq.(??), quasi-
Newton (qN) method[3,4] was chosen to resolve the six
deformation parametes in this study. Quasi-Newton
method is an improvement of Newton-Raphson method,
qN replaces the calculation and inversion of Hessian ma-
trix by updating the approximation matrix with BFGS
formula (Broydeb, Fletcher, Goldfarb, Shanno) as[3]
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where Hk+1 = H(~pk+1) is the approximation of Hessian
matrix ∇∇C(~pk+1)

−1, and H0 equals the identity ma-
trix I, ~yk = ∇C(~pk+1) − ∇C(~pk), ~sk = ~pk+1 − ~pk. The
iteration formula of qN could be written as

~pk+1 = ~pk − τH(~pk)∇C(~pk), (3)

where τ >0 is the step size, and τ could be further de-
termined by inexact line-search method which includes
the bracketing phase and finding acceptable point within
bracket.

Thin-plate spline smoothing[8,9] is an spline based
smoothing technique which is able to tackle observed
data of any dimension. Generally, the task of TPSS is to
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minimize Sλ(α)[9] of following form,
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where λ is the parameter that controls the tradeoff be-
tween the smoothness of resultant spline α(x, y) of de-
gree 2m–1 and the infidelity of α(x, y) to the observed
data β(x, y), polynomial spline. Parameter λ can be de-
termined by generalized cross-validation (GCV)[9].

In active noise thin-plate spline smoothing, additional
Gaussian random noise N{0, σ[β(xi, yi)]} is added to
the original observed data β(xi, yi) by

η(xi, yi) = β(xi, yi) + N{0, σ[β(xi, yi)]}. (5)

The noise could be defined as constant deviation,

N{0, σ[β(xi, yi)]} = N (0, δ) , (6)

or defined as magnitude dependent deviation model,

N{0, σ[β(xi, yi)]} = N [0, δ · |β(xi, yi)|], (7)

where δ is a predefined active noise level. Then the TPSS
is used to smooth the noised data η(xi, yi). In DIC,
β(xi, yi) would be correlated displacement u(xi, yi) and
v(xi, yi).

The performance of ANTPSS with two noise mod-
els on smoothing the actively noised displacement field
for calculating strain field were verified on simulated
tensile images. For comparison, original displacement
fields were also smoothed directly with TPSS and spline
least-squares approximation (SLSA). The reference im-
age and deformed image with pre-assigned deformation
configuration ∂u/∂x = 2 000 µε were generated. The
region of interest containing 1 225 (= 35×35) points and
subset size of 31×31 pixels were selected. The deformed
image is analyzed with qN method, and the obtained dis-
placement field u on x direction and strain field ∂u/∂x
are shown in Fig. 1.

The calculated displacement and strain fields in Fig.
1 are not very smooth, especially there is large variation
in strain field since the pre-assigned value is 2 000 micro
strain. In the following, the ANTPSS is used to smooth
the displacement filed with different active noise level
δ in two models, then the strain field is generated by
differentiation. TPSS and SLSA are also adopted to
smooth the original displacement filed. The precision
of obtained strain field are evaluated with root mean-
squares (RMS).

The strain fields and the corresponding RMS errors
(in Fig. 2(d)) are shown in Fig. 2, where δ=0.01 is used
in ANTPSS. As the results demonstrate that the RMS
is very small (only 14.0 micro strains) for ANTPSS (in
Fig. 2(c)) while SLSA (in Fig. 2(a)) and TPSS (in Fig.
2(b)) give rough strain field, the RMS error for TPSS is
very large (124.7 micro strain). Compared with TPSS,
SLSA produces smoother and better strain field, with
RMS error equals 87.5 micro strains.

Fig. 1. (a) Calculated displacement field and (b) strain field
by qN.

Fig. 2. Strain field by (a) SLSA, (b) TPSS, (c) ANTPSS, and
(d) RMS error of stain by using these methods (δ=0.01).

To investigate the effect of noise level parameter δ on
the strain field, we set δ to ten different values (δ=0,
0.001, 0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.5, and 1), for
each value, ANTPSS is run ten times, so there are 100
runs of ANTPSS. The mean RMS and standard devia-
tion of RMS obtained with different δ are shown in Fig.
3. The RMS error that is smaller than 50 micro strains
is available by setting δ in range [0.005, 0.02]. As Fig. 3
indicates, in current simulated tensile test, the optimal δ
is very close to 0.01.

Similar tests are conducted when the magnitude de-
pendent deviation model is used. In this test, δ is set to
nine different values (δ=0, 0.001, 0.005, 0.01, 0.02, 0.05,
0.08, 0.1 and 0.5). Compared with the constant devia-
tion model, the magnitude dependent deviation model
leads to larger deviation in RMS as shown in Fig. 4. For
constant deviation model, a wide range of δ (from 0.005
to 0.02) could be selected with low RMS error and RMS
deviation, however the range is very narrow for magni-
tude dependent deviation model with δ closing to 0.01.
As a result, constant deviation model is more robust to
δ.

Both the results in Figs. 3 and 4 show that the ac-
tively added noise (corresponding to δ>0) is positive in
improving the accuracy and the consistency of strain
results given that parameter δ is set properly. It is
also found that, the active noise is beneficial when δ
is no larger than 0.02 in above two models, while the
noise turns to be harmful when δ is too large (>0.05
for instance). Generally δ could be set to 1% of average
displacement for most practical measurement.

To verify the performance of ANTPSS in smooth-
ing complex displacement field for inhomogeneous
strain field calculation, a three-point bending exper-
iment was conducted for a foam block. The noisy
displacement field u and strain field ux calculated di-
rectly by qN are shown in Figs. 5(a) and (b). Then
ANTPSS was used to smooth u and then u x was com-
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Fig. 3. Mean RMS and standard deviation of RMS obtained
with different δ for the constant deviation model.

Fig. 4. Mean RMS and standard deviation of RMS obtained
with different δ for the magnitude dependent deviation model.

Fig. 5. Comparison between displacement field u/pixel (a),
strain field ux/ε (b) calculated by qN and smoothed u/pixel
(c), ux/ε (d) by ANTPSS.

puted by differentiation, and results are shown in Figs.
5(c) and (d) respectively. As recommended, in ANTPSS
δ is set to 1% of average u field. Results show that
ANTPSS could dramatically decrease the noise in u and
obtain reliable strain field.

In conclusion, the active noise thin-plate spline smooth
(ANTPSS) method with two Gaussian noise models are
proposed to smooth the displacement field for strain
measurement in digital image correlation. Experiment
on simulated tensile images shows that, the root mean-
squares error of resultant strain field by ANTPSS is
smaller than that by original TPSS and spline least-
squares approximation. Compared with magnitude de-
pendent deviation model, ANTPSS with constant devia-
tion model is less sensitive to setting of active noise level
δ. Generally δ could be set to 1% of average displacement
for most practical measurement. The proposed ANTPSS
method was used to smooth the noisy displacement field
obtained in the three-point bending experiment of foam
block, and it generated a reliable inhomogeneous strain
field. Thus, ANTPSS is a simple and effective displace-
ment smoothing method for DIC.

The work was supported by the National Natural Sci-
ence Foundation of China (Nos. 51175293 and 10972114).
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